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Monitoring crop condition and production estimates at the state and county level is of great
interest to the U.S. Department of Agriculture. The National Agricultural Statistical Service (NASS) of
the U.S. Department of Agriculture conducts field interviews with sampled fann operators and crop

.. cuttings to obtain crop yield estimates at regional and state levels. NASS needs supplemental spatial
data that provides timely infonnation on crop condition and potential yields. In this research. the crop
model EPIC (Erosion Productivity Impact Calculator) was adapted for simulations at regional scales.
Satellite remotely sensed data provides a real time assessment of the magnitude and variation of crop

. condition parameters and this study investigates the use of these parameters as an input to a crop growth
model. This investigation was conducted In the semi-arid region of North Dakota in the southeastern part
of the state. The primaIy objective was to evaluate a method of integrating Landsat TM satellite data in a
crop growth model to simulate spring wheat yields at the sub-county level. The input parameters
derived ftom remotely sensed data provided spatial integrity, as well as a real-time calibration of model
simulated parameters dwing the season to ensure that the mOdeledand observed conditions agree. A·
radiative transfer model (SAIL) provided the link between the satellite data and crop model. The model
parameters were simulated at the satellite pixel level in a geographic infonnation system, which was the
pla1fonn for aggregating yield at local and regional scales. The simulation was run for each soil type
within the county and the results integrated to provide county yields. The model simulated yields were
similar to reported county averages and the farm level yields at selected NASS survey sites.

INTRODUCTION

Monitoring agricultural crop conditions during the growing season and estimating
the potential crop yields are both important for the assessment of seasonal production.
Accurate and timely assessment of particularly decreased production caused by a natural
disaster, such as drought or pest infestation, can be critical for countries where the
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economy is dependent on its crop harvest. Early assessment of yield reductions could avert
a disastrous situation and help in strategic planning to meet the demands. The National
Agricultural Statistics Service (NASS) of the U.S. Department of Agriculture (USDA),
monitors crop condition to provide monthly estimates of major crop yields and production
in the United States. NASS has developed methods to assess crop growth and
development from several sources of information including surveys of farm operators, crop
condition reports from field surveys and local weather information.

Current NASS procedures require field sample interviews and crop cuttings to
obtain crop yield estimates at multi-state (regional) or state levels. NASS needs
supplemental spatial data to provide timely information on crop condition and potential
yields. NOAA AVHRR data currently provides a means to evaluate crop condition
biweekly from data supplied by EROS Data Center (Mueller et aI., 1996). However, the
images do not directly provide crop yields. The focus of this paper is to develop the
groundwork for procedures to make yield forecasting process available at larger scales. The
timely evaluation of potential yields is increasingly important because of the economic
impact of agricultural products on the world markets.

The use of remote sensingtechnology for monitoring vegetation condition has been
studied extensively during the past decade, providing timely assessment of changes in
growth and development of agriculturalcrops. The normalized difference vegetation index
(NDVI) derived from the visible and near-infrared reflectance of the NOAA AVHRR
meteorological satellite have been successfully used to monitor vegetation changes at
regional scales (Tucker et al.,1983). Temporal changes in the NDVI have been shown to
relate to net primary production (Prince et al., 1986, Malingreau et aI. 1986, and Goward
et aI., 1987). Tucker and Sellers (1986) provided a theoretical background to relate
primaryproduction estimates based on the absorption of photosynthetically active radiation
(PAR) by the canopy. Satellite observations can provide an estimate of biomass. Earlier
field studies conducted by Daughtry et aI., (1983) and Asrar et aI., (1985) provided
experimentalvalidation of this theory that relates spectral reflectance to biomass production
of vegetation at field and regional scales.

Using the NDVI parameter derived form NOAA AVHRR data, to estimate crop
yields is an extension of the above concept. Studies have shown that the seasonal
accumulated NDVI values are correlated well with the reported crop yields in semi-arid
regions (GroteD, 1993). Doraiswamyet al., (1994) further demonstrated that accumulating
the AVHRR derived NDVI values for spring wheat only during the grain-fill period
improved the estimates of potential crop yields in North Dakota. Using a crop mask
helped in derivingthe NDVI values for primarily spring wheat crop. Although the results
were encouraging, the relationshipsseemed to be valid only for the study areas and required
adjustment for differences in soil background and the mixture of crops in the area because
of the low resolution ( one Km) of the NOAA AVHRR data.

Crop physiology based growth models have been used successfully for predicting
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crop yields at the field level. These models however, use numerous inputs that are specific
to the crop, soil characteristics, management practices and local climatic conditions.
These models have limited use because of the fewer number of inputs that are generally
available at larger than field scales. Additionally, when considering large scale model
applications, satellite remote sensingtechnology has been shown to be capable of providing
certain crop characteristics and a real-time snapshot of changes in conditions affected by
weather related events. The growth models simulate the biophysical processes in the soil-
crop-atmospheric system to provide a continuous description of growth and development.
Combining such a growth modelwith input parameters derived from remotely sensed data,
provides spatial integrity as wen as a real-time "calibration" to the simulations of model
parameters (Maas et. aI., 1988, 1992, 1993~Moulin et aI., 1992 and Guerifet aI., 1993).
Earlier studies conducted at field scales have shown that remotely sensed data could be
incorporated in simulations of agricultural crop yields to calibrate or adjust parameters
during the simulation period to ensure that the modeled and satellite observed conditions
agree.

The integration of remotely sensed data with a crop growth model can be achieved
by using two distinct methods. In the first method, model initialization is done by estimating
crop parameters from remote sensing data and using these parameters as a direct input to
the growth model. Crop parameters successfullyused in this method are measures of light
interception by the canopy, namely, leaf area index (LA!) and crop canopy cover. In a
second method, a time seriesof remotely sensed measurements is used to calibrate the crop
growth model. Maas (1988) adjusts simulated values of LA! to match the LA! estimates
from reflectance measurements observed by the Landsat TM satellite. Bouman (1992)
linked X-band radar and canopy optical reflectance were used to link to a crop growth
model so that canopy reflectancewas simulated with crop growth. The calibration in this
procedure is through the LA! and leaf optical properties that link the crop growth model
with a radiative transfer model. Moulin et aI., (1995) successfully showed that the temporal
variation of spectral reflectance at field and regional scales can be linked to a crop model.
The objective of our research was to simulate the crop leaf area index and vegetation
parameters at the satellite pixel level and assess the spatial variability of crop yields. A
radiative transfer model provided the link between satellitedata and the crop growth model.
The geographic information system (GIS) was used to aggregate the data layers and model
parameters for determiningthe yields at the sub-county and county levels in North Dakota.

MATERIALS AND METHODS

Study Area

The predominantly spring wheat counties of Sargent, Ransom and Richland in the
south-eastern comer of the state of North Dakota (Figure 1), were selected for this study
during the 1994 crop season. The eastern part of the state has a greater amount of spring
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wheat because the soils and climaticconditionsare less harsh than in the western part of the
state. Farmers grow springwheat in this area in soils generally dominated by the following
soils: loarns and clayloams with dark to black soil surface, limy subsoils, sandy loams and
loarns with sandy or gravelly substrata. The total seasonal rainfall in the eastern region
(April to September) ranges from 355 to 457 mm. Since spring wheat is grown under non-
irrigated conditions, the seasonal variability in rainfall patterns contributes to the variability
in crop yields from season to season. The other predominant crops cultivated in the study
area include spring barley, sunflower and com. Pasture is generally found in the non-
productive soil areas. The total acreage of spring wheat in Sargent, Ransom and Richland
counties are, respectively, 120, 120 and 210 thousand acres.

Crop Growth Model

Several models were examined for their ability to provide a simulation for regional
assessments with only a few input parameters. Since soil moisture conditions are a key
factor in determining crop yields, the model was required to have a rigorous soil-water
budget component. The EPIC (Erosion Productivity Impact Calculator) model developed
by Williamset aI., (1984) was selected to simulate the spring wheat crop growth and yield.
The model components include weather simulation, hydrology, erosion-sedimentation,
nutrient cycling, pesticide fate, plant growth, tillage, soil temperature, and crop and soil
management. EPIC simulatesthese processes using a daily time step for several different
crops using generally available inputs ..

The EPIC model is a mechanistic growth model describing the potential growth of
the crop as a function of solar irradiation, air temperature, precipitation and crop
characteristics. The potential biomass is adjusted daily as a function of five plant stress
factors (water, temperature, nutrient, aeration, and rootgrowth) .. The EPIC model has
evolved over the past decade into a widely used model and has gone through rigorous
testing under various environmental conditions. Its ability to simulate yields of grain
sorghum, wheat (Steiner et aI., 1987) and com (Bryant et al., 1992, Schneekloth et al.,
1992) has been very satisfactory. In Southern France, simulation of yields for crops grown
in complex rotation (com, sorghum, sunflower, soybean and wheat) were reported to be
within acceptable accuracy for many applications (Cabelguenne et al., 1990). In southern
Alberta, Canada, yields of spring wheat and spring wheat rotations were simulated
accurately by EPIC (Toure et aI., 1995).Nutrient (total Nitrogen, organic Phosphorous and
Carbon) predictions for a three-year rotation (cotton-grain sorghum-wheat) were also found
satisfactory (Smith et al., 1990). Hydrologic processes, runoff, percolation and
Evapotranspiration, simulated by the model were in good agreement with observed values .
(Edwards et aI., 1994; Meisinger et aI., 1991; Stiener et aI. 1987). However, conducting
validation procedures is critical for specific crops in the study region before using simulated
data in further analyses (Addiscott and Wagenet, 1985; Tanji, 1982).
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The SAIL model

The one dimensional radiative transfer model, SAil...(Scattering by Arbitrarily
Inclined Leaves) (Verhoef. 1984), provided simulated canopy reflectance in the direction
of the sensor. The SAIL model requires infonnation on four canopy parameters: LA!, leaf
angle distribution (LAD), the singleleafreflectance and transmittance. The leaf reflectance
and transmittance parameters used in this study for the visible band were 0.12 and 0.01,
respectively,and for the near-infraredwere 0.46 and 0.50 respectively. The soil reflectance
for the visible and near-infrared were 0.13 and 0.19 respectively. Other parameters
required for the model included solar zenith and azimuth angles, sensor view angle,
proportions of direct and diffuse shortwave solar radiation. Solar angles are computed as
a function of latitude, date and time of satellite overpass time. Earlier investigators have
shown that leaf optical properties differ with spring wheat varieties (pinter et al., 1985; and
Jackson et al., 1986). Optical properties of the spring wheat varieties grown in North
Dakota were selected based on prior studies. The EPIC model simulated the daily LA!
required as input to the SAil...model.

Processing of Satellite data

Satellite data used in this study were acquired by Landsat TM on two dates (May
28 and June 30). There were clouds present in the imageryon these dates, however the area
covering the three counties were clear on both dates. The imagery data was in the UTM
projection and registration to map control points in the Land Analyses System software.
The digital counts were calibrated to radiances to obtain the surface reflectances. The
normalized difference vegetation index for each pixel is calculated using the red and near
infrared (NIR) reflectance as follows:

NDVI= (NIR-RED) / (NIR+RED) (1)

Qimate data

Daily weather data collected from a total of five climate stations within the three
counties, however data from stations in the surrounding counties were used to extrapolate
data for locations in the three county area. The daily data available were maximum and
minimum temperatures, solar radiation and precipitation. The ARC/INFO geographic
infonnation system (GIS) was the platform for maintaining all the layers of data and spatial
extrapolations were done within this environment.

Soils data

The major soil groups were identified from the General Soil Map of North Dakota
and from the County Soil Survey Report published by the North Dakota Agricultural
Experiment (USDA, SCS , 1990) Station and U.S. Soil Conservation Service. Soils
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physical and chemical properties were obtained from the EPIC soils5 database for North
Dakota (Sharpley and Williams, 1990). The digital form of the data was brought into the
GIS and the general soil association polygons (Figure 2) were identified as the basic unit
to run the crop growth model to obtain a regional yield.

Figure 2 shows the major soil groups in the three county study area. The soils are
generally nearly level to gently rolling with a thick black surface layer with calcareous,
c1aypan or wet subsoils. Surface texture varied from fine to coarse. The dominant soil
groups in the area are the moderately well drained loarns and clay loarns (Fonnan-Aastad,
Barnes-Hamerly, Barnes-Svea, Garden-Glyndonand Overly-Bearden). Embden-Tiffany and
Hecla-Hamar groups are moderately well drained fine sandy loarns with rapid penneability
and low water holding capacity. Renshaw (fine loarny over sandy) is somewhat excessively
drained and had moderately rapid penneability. The Fargo series consists of deep poorly
drained fine texture soils with slow penneability and high water holding capacity.

Landsat TM Crop Oassification and Crop Data

Accurate location of the spring wheat in the county was an important consideration
in obtaining accurate results. Therefore, classificationof Landsat TM data into land use and
crop types was targeted as the first input into the yield modeling effort. USDA/NASS
developed an accurate crop classificationusing four overlaid dates of 1994 Landsat TM data
for path 28, row 30 in southeastern North Dakota and northeastern South Dakota (Cook,
et al.,1996).

The crop classification effort used ground infonnation from NASS's June
Agricultural Survey (JAS) to establish the crop categories and develop the clusters for the
classification. Farm Services Agency (FSA) provided fanner supplied field data to verifY
the accuracies obtained. Spring wheat was the most accurately classified crop within the
North Dakota counties with an accuracy of 87.2% for the NASS JAS data, but 79.2%
correct for the FSA data. However, prints of the classified data clearly show field
boundaries that delineate well the transition from one group of crops to the other. So the
classificationappears very map-like and does represent well the location of spring wheat in
the area.

The land use map produced in cooperation with NASS was used to select spring
wheat acreage for development of the spring wheat yield model. The crop mask of spring
wheat acreage within each county is shown in figure 3. Crop infonnation (acreage, yield)
for the 1994 season was obtained from the North Dakota Agricultural Statistics Report.
Infonnation on crop phenology was obtained from weekly crop-weather bulletins of North
Dakota Agricultural Statistics Service. Spring wheat yields from four field sites obtained
by NASS during the 1994 season were used in further validation of the model results.
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Data Organization

A geographical information systems (GIS), was used to organize, extract and
analyze the spatially distributed layers of information. The predominantly spring wheat
areas were delineatedfrom the land use maps. The soils association map was registered to
the NDVI map derived from the Landsat TM image. The NDVI statistics of the wheat
pixelswere extracted for each soil type, since this was the basic unit from which the model
simulation was conducted.

Weather data required for the model simulation was generated by interpolation the
data from existingweather stations located around the study area. The generation of these
arrays provided the environmental data needed to execute the model and produce a
simulation of LA! and yield for each soil type. The simulation results are presented in the
GIS for each soil type, to facilitate the aggregation of the results to the county level.

Crop Simulation and Model Calibration

The crop simulationwas conducted at the sub-county level by organizing the data layers of
climate, soil physical properties, surface reflectances and NDVI in the GIS within each of
the soil types, and represented as separate polygons. The crop growth model was run to
estimate the leaf area index and the final wheat yield. First, location parameters, weather
data for the 1994 growing season, soils data and crop specific parameters (default) were
used as inputs to the model. In general when assessing yields at regional scales, no actual
infonnation on sowing and maturity dates are available. The model was initially run using
the earliest reported dates (stat.e averages) of planting and maturity to establish the number
of growing degree days required from emergence to maturity. Once the growing-degree-
days were established, only the sowing date is required as input while maturity dates were
automatically determined according to the specified number of growing degree days from
emergence.

Several model parameters are reinitialized in the calibration procedure of the crop
growth model. In this study, calibrations were limited to adjusting the maximum potential
LA! of the crop and leaf area decline rate parameters for each soil type. In addition, since
sowing dates are not readilyavailable,these dates were adjusted to provide the correct time
of peak and seasonal pattern of LA!. The calibration procedure is shown schematically in
Figure 4. The crop model was initially run using default (unadjusted) parameters to
generate the LA! and crop yield. The resultingdaily LA! was an input to the SAIL model,
simulated reflectances in the RED and NIR spectral range equivalent to the Landsat TM.
The NDVI values calculated using the reflectances obtained from the SAIL model are
compared with NDVI derived from direct satellitemeasurements. Model parameters were
adjusted until a reasonable fit with the observed data was attained .
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RESULTS AND DISCUSSION

The general spring wheat crop calendar for North Dakota is shown in Figure 5
describing the earliest occurrences of the different phenological stages of development.
Based on NASS state level reports, the sowing season begins in mid April and continues
through the first week of June and the crop maturity begins in early July and continues
through the end of August. For areas in the southern part of the state where the earliest
sowing occurs, the crops emergeby the firstweek in May. Flowering occurs by the second
week of June and the spring wheat crop matures by the first week in July for the earliest
planting dates. Simulation of crop growth using the earliest planting date and growing
degree days of 1300 from emergence to maturity agreed very well with the observed data
provided by NASS reports.

The range and magnitude of the NDVI values for the classified spring wheat for
May 28 is shown in figure 6. This image represents the vegetative stage of crop growth.
There was a wide variability in NDVI, with the eastern side greener (higher NDVI)
compared to the western side of the study area. Figure 7 shows the increased NDVI values
for June 30, the crop has passed or is at the flowering stage. The same pattern in NDVI
occurred as in the May image, with the eastern side greener than the western side. This
variabilitycould be due to differences in sowing or emergence dates, weather (rainfall and
air temperature) and soil moisture conditions.

Simulationof the crop growth calibratedwith remotely sensed data was carried out
for all soil types within each county. The crop model was run at the soil association level
and figure 8 is an example of the daily output of satellite derived and simulated NDVI for
different sowing dates, varied by 10 days starting with the earliest possible sowing date
reported for this area. The sowing date selected for simulating yields for this particular soil
type was April 30, based on the graphical representation which shows the mean and
standard deviation of the satellitederived NDVI within each soil type. The second point of
adjustment occurs past the floweringstage since earlier satellite data was not available. The
calibration of the rate of decline in NDVI is also adjusted to match the satellite derived
values. The finalyields are simulatedusing crop parameters adjusted to provide the match
for the daily NDVI values. '

The analyses of soil moisture conditions obtained from model simulations suggest
that more water stress days occurred in the western part of the study area compared to the
eastern side. Figure 9 is a snap-shot representation of moisture conditions in the three
county area for June 26, 1994. The four graphs represent the time series of available soil
moisture for selected soil types. Barnes and Forman soils in the western part of the study
area reach lower levelsof availablesoilmoisture compared to Garden and Fargo soils in the
east. This low availability of soil moisture during the vegetative phase reaches a minimum
at the critical stage of flowering. The predicted lower LA! (NDVI) due to limitations in
soil moisture Conditions caused a greater than normal rapid rate of decline in leaf area due
to premature senescence. Soil moisture availability appears to be the most critical factor
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influencing crop yields in dryland farming. Although the interpolated rainfall data in the
four soil types are similar, the soil water holding capacity and the ability to maintain a
continuous moisture supply throughout the growing season results in higher yields.

Figure 10 is a map of spring wheat yield distribution in the study area simulated
within the GIS environment. The spring wheat yields varied from as low as 9.2 to a
maximumof44.8 b/ac, depending on soil types and seasonal patterns of rainfall. The yields
were simulated for each soil type and aggregated to obtain the weighted county level yield.
A comparison of the simulated and USDA/NASS reported yields are shown in figure 11.
There are four farmer reported yields at the farm level that are presented along with the
county level aggregated yield. The results of modelyieldsare very encouraging and proved
to be a beneficial technique for integrating remotely sensed data with crop models to
monitor yields at field and county regional scales. This technique will be extended to
monitor yields for the entire state and the surround spring wheat region using NOAA
AVHRR data.

CONCLUSION

In this study, we have demonstrated the use of a crop simulation model (EPIC)
together with remote sensingdata (Landsat TM) in monitoring crop growth and estimating
the final yields of spring wheat for three counties in Southeastern North Dakota. Model
simulation calibrated with remotely sensed data obtained during the growing season
predicted spring wheat yieldswith a high degree of accuracy, to within one bushel per acre
of the USDNNASS reported yields. The finaiadjustmentto the crop model using remotely
sensed satellite data took place about midway between the time of flowering and crop
maturity. This is optimum period of crop development when the combined models can
provide a good assessment of the potential yields.

Although only two satellite images were used to calibrate the model, this provided
sufficient data for a successful calibration. The availability of cloud-free satellite data
during a critical window of data acquisition is necessary to achieve optimum calibration of
the crop model. The three optimum calibration periods occur during the early vegetative
phase, flowering and senescence. However, only two effective Landsat TM overpass dates
are usually availableduring the crop growing season This research has demonstrated two
ways of improving crop yield assessments: 1). Landsat TM data can provide an effective
means to calibrate the climate based crop growth model (EPIC) during the crop growing
season when the satellite data is available at optimum times. 2). The models can generate
crop yield predictions at the soil association level that can be aggregated to provide county
yields.
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